Question:
A box without a lid has a square base of side 𝑥 and rectangular sides of height ℎ . It is made of 10800mm2 of sheet metal of negligible thickness. Prove that:
![](https://static.wixstatic.com/media/20c892_21d01f9dd70d4c3ba2f04cb714a55112~mv2.png/v1/fill/w_787,h_78,al_c,q_85,enc_auto/20c892_21d01f9dd70d4c3ba2f04cb714a55112~mv2.png)
and that the volume of the box is:
![](https://static.wixstatic.com/media/20c892_4bd4ab11dc814fa1946ae043481db2a1~mv2.png/v1/fill/w_795,h_61,al_c,q_85,enc_auto/20c892_4bd4ab11dc814fa1946ae043481db2a1~mv2.png)
Hence calculate the maximum volume of the box.
Answer:
![](https://static.wixstatic.com/media/20c892_71a1838eb3ff4634889f4b46830ee1e6~mv2.png/v1/fill/w_822,h_229,al_c,q_85,enc_auto/20c892_71a1838eb3ff4634889f4b46830ee1e6~mv2.png)
![](https://static.wixstatic.com/media/20c892_350d0bad92f54193bc663404f7e98bd0~mv2.png/v1/fill/w_803,h_294,al_c,q_85,enc_auto/20c892_350d0bad92f54193bc663404f7e98bd0~mv2.png)
We know the standard formula to calculate the volume of a rectangular box:
![](https://static.wixstatic.com/media/20c892_09b9301384804d568ef791382ff002fd~mv2.png/v1/fill/w_808,h_371,al_c,q_85,enc_auto/20c892_09b9301384804d568ef791382ff002fd~mv2.png)
Now differentiate and set equal to zero to find the turning points:
![](https://static.wixstatic.com/media/20c892_a6a12f34b7ae413cb4c63b17631438a0~mv2.png/v1/fill/w_795,h_342,al_c,q_85,enc_auto/20c892_a6a12f34b7ae413cb4c63b17631438a0~mv2.png)
Plug the value for x into the second derivative to find out if this x value will produce a maximum value for the volume of the box.
![](https://static.wixstatic.com/media/20c892_67521a2cae5942e99277d3bc4936de6d~mv2.png/v1/fill/w_797,h_230,al_c,q_85,enc_auto/20c892_67521a2cae5942e99277d3bc4936de6d~mv2.png)
Now simply sub x into original equation for the max volume:
![](https://static.wixstatic.com/media/20c892_3b927796de1f434aaad9a48690953ce1~mv2.png/v1/fill/w_782,h_207,al_c,q_85,enc_auto/20c892_3b927796de1f434aaad9a48690953ce1~mv2.png)
Comments