Question:
A rectangular sheet of metal measuring 120mm by 75mm has equal squares of side 𝑥 cut from each of the corners. The remaining flaps are then folded up to form an open box. Prove that the volume of the box is given by:
![](https://static.wixstatic.com/media/20c892_1769f1826b98426d8fc6c54612e87ea5~mv2.png/v1/fill/w_797,h_46,al_c,q_85,enc_auto/20c892_1769f1826b98426d8fc6c54612e87ea5~mv2.png)
Answer:
Find the maximum volume of the box and the corresponding value of 𝑥.
![](https://static.wixstatic.com/media/20c892_112997407c2d42ccb5ee7fdeb2e695ec~mv2.png/v1/fill/w_856,h_221,al_c,q_85,enc_auto/20c892_112997407c2d42ccb5ee7fdeb2e695ec~mv2.png)
![](https://static.wixstatic.com/media/20c892_95a7f1061df84a39ab90b4869ee5f008~mv2.png/v1/fill/w_980,h_631,al_c,q_90,usm_0.66_1.00_0.01,enc_auto/20c892_95a7f1061df84a39ab90b4869ee5f008~mv2.png)
To determine which value of x will produce the maximum volume, firstly find the second derivative:
![](https://static.wixstatic.com/media/20c892_5bf5ef99def74b12b0f2d88ad5f42949~mv2.png/v1/fill/w_980,h_185,al_c,q_85,usm_0.66_1.00_0.01,enc_auto/20c892_5bf5ef99def74b12b0f2d88ad5f42949~mv2.png)
Sub in x = 15:
![](https://static.wixstatic.com/media/20c892_c796aed39a344f15b79f7a814682c7b2~mv2.png/v1/fill/w_978,h_190,al_c,q_85,enc_auto/20c892_c796aed39a344f15b79f7a814682c7b2~mv2.png)
As x = 15 will produce the maximum volume of the box, substitute x = 15 into original equation:
![](https://static.wixstatic.com/media/20c892_afd320a0d7464f8cae82ccf07ddc8ab0~mv2.png/v1/fill/w_973,h_121,al_c,q_85,enc_auto/20c892_afd320a0d7464f8cae82ccf07ddc8ab0~mv2.png)
Comments